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ABSTRACT
Machine learning (ML) is getting more pervasive. Wide adoption of ML in healthcare, facial recognition,
and blockchain involves private and sensitive data. Inference on encrypted data, termed Fully Homomorphic
Encryption (FHE), preserves the privacy of both data and the ML model. However, it slows down plaintext
inference by six magnitudes, with a root cause of replacing non-linear operators with high-degree Polynomial
Approximated Function (PAF). To reduce the degree without sacrificing accuracy, we propose (1) Coefficient
Tuning (CT) to obtain a good initial coefficient value for each PAF, (2) Progressive Approximation (PA) to enable
convergence by replacing ReLU and training parameters in a divide-and-conquer manner, and (3) Alternate
Training (AT) to further improve the post-replacement accuracy. A combination of CT, PA, and AT enables the
exploration of accuracy-latency space for FHE-domain ReLU replacement. Our evaluation shows that the optimal
PAF with 12 degrees reduces 72% latency of the state-of-the-art 27-degree PAF with the same post-replacement
accuracy (69.0%) on ResNet-18 using ImageNet 1k dataset.

1 INTRODUCTION

Machine learning (ML) is getting more pervasive with a
wide deployment in healthcare (Mateen et al., 2020), facial
recognition (Raji & Fried, 2021), and blockchain (Zhang
et al., 2021), leading to privacy leakage with private and
sensitive data involved. Fully Homomorphic Encryption
(FHE) enables ML inference on encrypted data, preserving
privacy from both data and models.

However, FHE-based ML inference comes with six mag-
nitudes higher latency overheads than plaintext inference.
Specifically, FHE-based ML inference requires the execu-
tion of both linear operators (Convolution, AveagePooling,
Fully Connection, etc.) and non-linear operators (ReLU,
MaxPooling). Surprisingly, around half of the latency is
consumed by computation-intensive non-linear operators.
The recurrent research problem is how to efficiently process
non-linear kernels in FHE.

1.1 Challenges

The high latency of processing non-linear operators boils
down to the fact that they are not naturally supported by
FHE and demand other schemes or approximations.

A plethora of prior arts illustrate the infeasibility of resort-
ing to other secure schemes for processing non-linear op-
erators in the practical system because of prohibitive com-
munication overheads for converting data securely among
schemes (Gilad-Bachrach et al., 2016; Lou et al., 2021; Ran
et al., 2022).

Additionally, approximations of non-linear kernels intro-
duce the trade-off between accuracy and latency. An ac-
curate approximation requires a high-degree Polynomial
Approximated Function (PAF) with a prohibitive long chain
of multiplication with bootstrapping. An example includes a
SotA 27-degree PAF (Lee et al., 2021; Kim et al., 2022). On
the other hand, a low-latency approximation suffers severe
accuracy degradation, which requires a combination of mix-
schemes and approximation to guarantee the accuracy (Lou
et al., 2021). Both are suboptimal.

Further, prior arts also navigated the trade-off space be-
tween accuracy and latency by replacing ReLU with PAF fol-
lowed by ML training-based coefficients fine-tuning. How-
ever, such a scheme hardly converge when for PAF with
higher than 5 degrees, leading back to the inefficient mixing
schemes paradigm with both other secure scheme and PAFs.

1.2 Our Contributions

To conquer the aforementioned limitations, this paper pro-
poses the first-ever systematic method to replace all ReLU
layers with low-degree PAFs without sacrificing accuracy
(to the best of our knowledge, the comparison with prior
arts is shown in Tab. 1).

Specifically, we propose three key techniques to decide the
initial coefficients of PAF, progressively replace ReLU with
PAFs and fine-tune coefficients of post-replacement PAFs
as follows.

• In PAF coefficients decision, we propose Coefficient
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Table 1. Comparison of proposed strategies with SotA.
Low

Communication
Overhead

low
accuracy

degradation

low
latency

overhead
SafeNet, CryptoGCN ✗ ✗ ✓

CryptoNet, CryptoDL, LoLa, CHE ✗ ✗ ✓
F1, CraterLake, BTS ✓ ✓ ✗

HEAX,Delphi,Gazelle,Cheetah ✗ ✗ ✓
SHE ✓ ✓ ✗

ReLU-FHE ✓ ✓ ✓
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Figure 1. Overview of the FHE-base ML inference where original
non-linear ReLU are approximated by linear Polynomial Approxi-
mated Activation (PAF).

Tuning (CT) that fine-tunes initial coefficients before
ReLU replacement to improve post-replacement accu-
racy by 1.04× ∼ 2.38× for PAFs of varying degrees.

• In ReLU replacement, we propose Progressive Approxi-
mation (PA) to optimize the whole deviation caused by
polynomial approximation in a layer-wise divide-and-
conquer manner, enabling the convergence of PAFs with
an arbitrary degree and exploration of the full accuracy-
latency tradeoff space.

• In post-replacement PAF coefficients fine-tunes, we
propose Alternate Training (AT) to decouple and train
weights and coefficients in an alternate fashion, resulting
in repeat accuracy climbing by 1.009 ∼ 1.037× of the
fine-tuned post-approximation ML model.

• A systematic scheduler to automatically explore
accuracy-latency tradeoff space. Our results show that a
sweet-point PAF with 12-degree can achieve the same
69.0% post-replacement accuracy with 72% latency re-
duction in ResNet-18 inference, compared to the SotA
27-degree PAF (Lee et al., 2021).

2 TECHINICAL BACKGROUND

2.1 Non-linear Kernel in FHE-based ML Inference

Fully Homomorphic Encryption (FHE) is an asymmetric en-
cryption scheme that enables ciphertext-based computation
with CKKS as the mostly used FHE scheme for machine
learning inference due to its superior efficiency in approxi-
mate computation compared to other schemes such as BGV,
BFV, and TFHE (Riazi et al., 2020). Under the CKKS
scheme, only linear operators are allowed as shown in Fig. 1
such that ReLU and MaxPooling need to be replaced by
PAF.

2.2 Polynomial Approximated Function (PAF)

High-degree polynomials could approximate arbitrary func-
tions theoretically. In practice, however, a direct approxima-

Table 2. Baseline PAF and post-replacement validation accuracy
Form α = 10 α = 7 f2

1 ◦ g2
1 f2 ◦ g3 f2 ◦ g2 f1 ◦ g2

Degree 27 14 12 12 10 8
Multiplication

Depth 29 14 12 9 8 7

Accuracy 69.0 64.7 51.3 49.4 32 18.6

tion of ReLU using PAF introduces severe approximation
errors (Lee et al., 2022). Instead, prior arts use polynomials
to approximate the sign(x) function, which outputs 1 if x
is positive, −1 if x is negative, and 0 for zero. Then both
ReLU and Max functions could be constructed respectively
by (x+sign(x)·x)

2 and (x+y)+(x−y)·sign(x−y)
2 .

Lower latency and less accuracy degradation are two funda-
mental goals of replacing non-linear ReLU functions with
Polynomial Approximated Functions (PAF). Latency is re-
flected in the multiplication depth of the polynomial, or
the degree of the polynomial, as multiplication using fully
homomorphic encryption (FHE) incurs a latency that is 3
orders of magnitude higher than FHE-based addition. While
accuracy degradation arises from the deviation between the
PAF and the original non-linear ReLU. This deviation is
caused by the approximation error introduced by the PAF,
which can vary depending on the degree of the PAF and the
coefficients of the PAF.

To approximate the sign(x) function, a cascaded polyno-
mial achieves fewer errors compared to the single polyno-
mial with the same multiplication depth (Lee et al., 2022;
2021), and we thus pick cascaded polynomial as baseline
PAF with post-replacement accuracy shown in Tab. 2. A typ-
ical cascaded polynomial is represented by fn, indicating a
serial cascaded connection of n polynomial f .

3 PROPOSED METHOD

3.1 Overview

In this section, we propose three techniques to enable low
latency (low degree) PAF with negligible post-replacement
accuracy degradation. (a) Coefficient Tuning (CT) tunes
each PAF to better fit with the original context of ReLU. (b)
Progressive Approximation (PA) enables progressive devia-
tion correction through neural network re-training instead of
directly fixing the entire deviation by replacing all ReLUs
with PAF once. (c) Alternate Training (AT) decouples the
training of PAF coefficients and parameters of other layers
for further accuracy improvement.

3.2 Coefficients Tuning (CT)

The naive approach for replacing non-linear rectified linear
unit (ReLU) functions with polynomial approximated func-
tions (PAF) is to directly replace all ReLU with a unified
PAF. However, this approach does not take into account the
fact that the distributions for input activations at different
ReLU layers are different.
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Figure 2. Coefficients Tuning (CT) uses profiled distribution to
fine-tune PAF coefficients to generate more accurate results on a
small value range with high probability in distribution.

Therefore, we propose Coefficients Tuning (CT) as a tech-
nique to use profiled data distribution to further fine-tune
coefficients of low-degree PAF, and then perform the re-
placement with post-CT PAF, as shown in Fig. 2 Specifi-
cally, we sample data from the real distribution of profiled
input activations of each individual ReLU layer, together
with actual ReLU results as the labels. The sampled data is
used to train initial PAFs and then post-CT PAFs are used
to replace the corresponding ReLU.

Intuitively, a PAF with a lower degree may not replicate the
ReLU output over the entire input range, but it can repli-
cate the ReLU output more accurately on a reduced input
range. CT renders low-degree polynomials only generate
accurate results over a small input range that is the highest-
probability range in the data distribution, and thus achieve
better accuracy improvement. Besides, CT reduces training
time because post-CT PAF’s output is closer to the output
of ReLU at the replacement point than initial PAFs.

3.3 Progressive Approximation (PA)

Direct replacement of all ReLU with PAFs during training
may not recover degraded accuracy and may even introduce
further accuracy degradation due to non-convergence. Be-
cause the approximation error between PAF and reference
ReLU output is too huge for training to correct.

To restrict the approximation error to the optimizable range
of the training algorithm, Progressive Approximation (PA)
applies the overall approximation error progressively instead
applies all errors once. Specifically, PA replaces ReLU with
PAF, one layer at a time, followed by fine-tuning all layers
ahead of the replacement point in the neural network (Fig. 2)

In the first step of PA, the first ReLU is replaced with a
PAF, and all layers ahead of the replacement, colored in
blue in Fig. 3, are retrained until accuracy converges. Such
a process is repeated until final convergence is achieved. PA
effectively minimizes the deviation caused by the approx-
imation error and thus effectively mitigates the accuracy
degradation.

3.4 Alternate Training (AT)

After ReLU replacement by PAF, fine-tuning is required to
recover the degraded accuracy. However, fine-tuning both
convolution weights and PAF coefficients together could
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Figure 3. Demonstration of the Progressive Approximation (PA).
In each step, a single ReLU layer gets replaced by the PAF fol-
lowed by a fine-tuning for all other layers ahead of the replacement
point.
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Figure 4. Alternate Training (AT) allows an interleave training
between PAF coefficients and parameters of other layers to further
reduce the accuracy degradation, where blue blocks are trained
with other blocks freeze.

even lead to a higher accuracy drop, indicating a failure of
convergence. The reason lies in the different impacts of
convolution weights and coefficients of PAF on the final
inference results. For example, a modification of value or
even a pruned of value on convolution weights might not
change the final inference results at all. While even a neg-
ligible change in coefficients of PAF could change every
value in the activations layer. Intuitively, the training of co-
efficients of approximated polynomials should be decoupled
from the training of convolution weights with even different
hyperparameters.

Therefore, we propose Alternate Training to train PAF co-
efficients and parameters of other layers separately in an
alternate manner. After each ReLU replacement, we will
first train the PAF coefficients with other parameters fixed
to optimize the PAF towards ReLU (Fig. 4). After a specific
epoch threshold, PAF coefficients get frozen with training
all other parameters. Such a training process intuitively is
the same as training the neural network with another ac-
tivation function instead of ReLU. The alternate training
repeats until the accuracy finally converges, resulting in an
alternating accuracy climbing. This approach effectively de-
couples the training of PAF coefficients from the training of
other parameters and allows for different hyperparameters
to train weights and PAF coefficients, resulting in improved
accuracy and convergence.
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Figure 5. Coefficient Tuning (CT) compared to direct replacement.

4 PRELIMINARY EVALUATION

4.1 Coefficients Tuning Evaluation

Fig. 5 illustrates that Coefficients Tuning (CT) significantly
improves overall validation accuracy by 1.04 ∼ 2.38× com-
pared to the baseline shown in Tab. 2. CT yields greater
benefits for polynomials with lower degrees. This is be-
cause polynomials with higher degrees have less overall
approximated error across the entire input range, whereas
low-degree polynomials have an insufficient capability of
fitting the entire range, resulting in a significant decrease
in accuracy. To mitigate this loss, CT focuses on fitting the
high-probability region in the distribution, resulting in less
approximated error.

4.1.1 Evaluation of Progressive Approximation

Progressive Approximation (PA) combines two techniques:
(a) progressive replacement of ReLU with PAFs as opposed
to direct replacement of all ReLU at once, and (b) pro-
gressive training of post-approximation model parameters
compared to direct training of all parameters. This results
in four different configurations, as shown in Fig. 6.

Among most PAFs with degrees ranging from 8 to 27, Pro-
gressive Approximation (PA) achieves the best overall accu-
racy because it allows gradual optimization of small devia-
tions introduced by the approximation error. Furthermore,
progressive training is more critical than progressive replace-
ment, as the accuracy improvement between direct replace-
ment with progressive training and progressive replacement
with progressive training is similar. In some cases, direct
replacement with progressive training even yields better
validation accuracy, e.g. in the f1 ◦ g2 configuration.

4.2 Ablation Study of All Proposed Techniques

To demonstrate the effectiveness of the proposed techniques,
we conduct an ablation study with results presented in Tab. 3.
Among all polynomials with different degrees, our proposed
training techniques consistently improve accuracy over the
baseline training strategy, by 1.03× ∼ 1.19× for different

Table 3. Ablation study of all different proposed techniques
α = 7 f2

1 ◦ g2
1 f2 ◦ g3 f2 ◦ g2 f1 ◦ g2

direct replacement 64.70% 51.30% 49.40% 32.00% 18.60%
baseline 66.70% 64.30% 64.20% 58.30% 53.10%

CT 67.70% 68.60% 67.00% 66.50% 61.70%
AT 68.30% 65.20% 63.70% 60.50% 52.00%
PA 68.40% 65.60% 64.60% 60.20% 52.60%

PA + AT 67.40% 64.90% 64.60% 56.50% 47.10%
CT + PA 67.00% 68.20% 67.60% 65.90% 60.80%

CT + PA + AT 68.10% 69.00% 61.40% 66.50% 63.10%
Accuracy Improvement
over direct replacement 1.06× 1.35× 1.37× 2.08× 3.39×
Accuracy Improvement

over baseline 1.03× 1.07× 1.05× 1.14× 1.19×
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Figure 6. Progressive Approximation (PA) evaluation.

degrees, rendering a 1.06 ∼ 3.39× accuracy compensation
from direct replacement.

In summary, all PAFs with varying degrees create a natural
tradeoff space between accuracy and latency. Our proposed
approach allows us to identify the optimal point in this
tradeoff space, a 12-degree PAF (f2

1 ◦ g21) that achieves
the same 69% post-approximation accuracy with 72% less
latency compared to state-of-the-art 27-degree polynomials.

5 CONCLUSION

This paper demonstrates that the training of ML models with
ReLU replaced with Polynomial Approximated Functions
(PAF) is a fundamentally different problem. The typical
training algorithm even leads to worse accuracy. To ob-
tain the low-degree PAF without sacrificing accuracy, we
propose a three-fold approach: (1) Coefficients Tuning to
reduce approximation error between PAF and ReLU using
profiled data distribution, (2) Progressive Approximation
to divide and conquer the deviation introduced by approx-
imation error, and (3) Alternate Training to improve post-
approximation accuracy through decoupled training of PAF
coefficients and other parameters. We explore the tradeoff
space of PAF with variant degrees ranging from 8 to 27 and
found that a 12-degree PAF yielded optimal results. Our
evaluation of it on ResNet-18 (ImageNet 1k dataset) demon-
strates a 69.0% overall post-approximated accuracy (0.3%
accuracy degradation compared with pretrained ResNet-18)
with 72% latency reduced compared to SotA 27-degree PAF.
The proposed techniques potentially opens a new paradigm
of obtaining PAF through ML training.
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