
A Reconfigurable Accelerator with Data Reordering Support for
Low-Cost On-Chip Dataflow Switching

Jianming Tong, Anirudh Itagi, Tushar Krishna
jianming.tong@gatech.edu, tushar@ece.gatech.edu

Georgia Institute of Technology

1. Switching dataflows should reorder data layout correspondingly.
- Dataflow-layout mismatch leads to 2~30X slowdown in real system.
- Reorder incurs extra overhead, overshadowing switching benefits.

2. Reorder in Reudction in LAMBDA hides reorder behind reduction,
enabling 1~24.3% speedup and 1.32~5.5X higher energy efficiency
3. LAMBDA enable serving workloads using optimal dataflows-layout.
- Proposed AFFT consumes 24% resources deliver 24.3% speedup.

Challenges

1.ML inference boils down to processing different dataflows.
2.No global optimal dataflow. Different dataflows have different

accessing patterns, requiring extra data reordering.
3. “Data Layout” - “Dataflow” mismatch leads to 30X slowdown.

3. change data layout requires data reordering, incurring overheads.

Layout: HWC_CX16 Dataflow 1 - CK ParallelLayer 1 - Large C

Dataflow 2 - WK ParallelLayer 2 - Large HW Layout: HWC_CX16

Read (layout 1)→Compute&Reduction→Write (layout 1)→Read & Reorder→Write (layout 2)

(b) On-chip Data Reordering.(a) Off-chip Data Reordering. Reorder in Reduction (RiR)

 Read (layout 1)→Compute&Reorder in Reduction→Write (layout 2)

Extra Reorder Overhead

1. Hardware: High reordering overheads restrict hw to compromise
and adopt fixed suboptimal dataflows across different workloads.
2. Layout Modeling: No systematic data layout modeling method,
and thus no dataflow exploration with layout consideration.

0 explicit latency reorder
Reorder in Reduction

 (in AFFT)

1. RIR: Additive Folded Fat Tree (AFFT) enables
- Arbitrary Reduction: accumulation of arbitrarily selected inputs data.
- Arbitrary Reorder: reorder accumulated data to arbitrary output ports.

2. Reorder in Reduction (RIR)
- Hide latency of reorder behind reduction, enabling layout switching in

direct on-chip buffer write back phase with negligible reorder costs.
- Optimal dataflow-layout inference for different layers.

LAMBDA Solutions

Motivation

1. Only one DPE row sent output to AFFT per cycle.
- AFFT resources overhead is amortized by all DPE rows.

2. Top-down store-and-forward enabling iActs/Weights Reuse.
3. Ping-poing StaB to enable layout-dataflow coswitching.

Conclusions

Read & Write On-chip Buffer Twice!

Takeaway 1: “Dataflow”-“layout” mismatch -> 2~30X slowdown.
Takeaway 2: No global optimal layout-dataflow combination.

Takeaway 3: Compared to (optimal dataflow under fixed layout) (optimal
dataflow, optimal layout) speedup 1%~24.3%, and achieves 1.32~5.5X
higher energy efficiency.

Takeaway 4: RIR saves 2.7~40.8%
off-chip reordering latency for
eliminated costs of moving data
between on-chip buffers and DRAM,

Experiments

Takeaway 5: AFFT consumes 24% resource from amortizing cost over row.

Bank
Conflicts
(2 ports)

¼ Slowdown!

Paper

