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ABSTRACT
The increasing prevalence of Machine Learning (ML) in various applications has led to the emergence of ML
models with diverse structures, types and sizes. The ML model inference boils down to the execution of different
dataflows (tiling, ordering, parallelism, and shapes), and using the optimal dataflow can reduce latency by up to two
orders of magnitude over an inefficient one. Unfortunately, reconfiguring hardware for different dataflows involves
on-chip data reordering and datapath reconfigurations, leading to non-trivial overheads that hinder ML accelerators
from exploiting different dataflows, resulting in suboptimal performance. To address this challenge, we propose
LAMBDA, an innovative accelerator that leverages a novel multi-stage reduction network called Additive Folded
Fat Tree (AFFT) for reordering data in data reduction (RIR), enabling seamless switching between optimal
dataflows with negligible latency and resources overhead. LAMBDA creates an opportunity to change the optimal
dataflows at the granularity of layers without incurring additional latency overhead, and to explore the optimal
dataflows on the real hardware with faster and more precise evaluation results. LAMBDA demonstrates a 0.5 ∼ 2×
speed up in end-to-end inference latency than the SotA Xilinx DPU on Xilinx ZCU 104 embedded FPGA board.

1 INTRODUCTION

The field of Machine Learning (ML) is expanding rapidly,
as ML is successfully applied beyond image classification,
object detection/recognition, text summarization, sentiment
analysis, and next word prediction. Such a plethora of ML
models introduces great diversity in structure (serial or par-
allel layers connectivity), types (depth-width, point-width,
dilation-based convolutions, or even a fusion of them), and
sizes (number of channels, kernels, height, and width).

Different ML models have varying preferences for
dataflows, which can lead to significant differences in utiliza-
tion and up to 2-magnitude variance in latency on most ML
accelerators (Kao et al., 2022; Kao & Krishna, 2020). How-
ever, changing dataflows of accelerators requires modifying
data layout in on-chip buffers and reconfiguring datapaths
in computation, distribution, and reduction networks.

To minimize the overheads of datapath reconfiguration, prior
work has introduced multiple redundant datapaths at design
time, with only a subset activated at runtime through config-
uration (Reuther et al., 2022). These approaches introduce
resource overheads but reduce the impact of reconfiguration
on latency (Samajdar et al., 2021; Qin et al., 2020; Kwon
et al., 2018; Hegde et al., 2019; Zhou et al., 2018; Wang
et al., 2021).

However, the overhead of data reordering is a critical
and often overlooked problem when dynamically changing

dataflows, as the benefits from changing dataflows can be
overshadowed by the data reordering overhead. Without a
suitable data layout, the required data may be located in the
same SRAM banks, resulting in severe underutilization of
computation engines due to competence on the same SRAM
reading ports. This can lead to stalling and a significant
performance gap between theory and practice.

In addition, on-chip data reordering on existing ML acceler-
ators requires additional intermediate storage and back-and-
forth data movement between on-chip storages, resulting
in significant resource overhead and latency costs. In fact,
these costs can outweigh the benefits of switching dataflows,
leading existing ML accelerators to compromise settling
on a single dataflow that provides good average utilization
across all layers, but suboptimal performance.

To unleash the optimal performance, we propose an inno-
vative accelerator LAMBDA featured with a novel reconfig-
urable reduction network called Additive Folded Fat Tree
(AFFT), to enable reordering of data in data reduction (RIR).
With LAMBDA, the latency of data reordering is completely
hidden in data reduction, allowing the data layout in on-
chip storage to be manipulated for the demand of optimal
dataflow, leading to optimal performance.

More generally, there’s a significant amount of dataflows
with various Tiling, Ordering, Parallelism, and Shape
(TOPS) (Kwon et al., 2021). LAMBDA also opens an op-
portunity for exploring the impact of various dataflows on
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Table 1. Features comparison (prior works v.s. LAMBDA).
Work Dataflow

Switching
Load

Balancing
Data Layout

Consideration
MAERI (Kwon et al., 2018) ✗ ✓ ✗
SIGMA (Qin et al., 2020) ✗ ✓ ✗
NVDLA (NVIDIA, 2016) ✗ ✓ ✗

Eyeriss v2 (Chen et al., 2018) ✗ ✗ ✓
Xilinx DPU (Xilinx, 2022) ✗ ✗ ✓

Gemmini (Genc et al., 2019) ✗ ✗ ✓
SARA (Samajdar et al., 2021) ✗ ✗ ✗

LAMBDA ✓ ✓ ✓

Input Activations (iActs) Output Activations (oActs)
Kernel 1 Kernel 2 Kernel 4

Figure 1. Terminology of convolution workload

the real hardware with the consideration of data layout in
on-chip storage, which is not considered by any existing
accelerator (to the best of our knowledge).

In addition to the hardware, we devise the end-to-end deploy-
ment framework that (a) compiles ML workloads with intra-
layer TOPS optimizations in real time. (b) generates config-
urations for LAMBDA to manipulate the AFFT. (c) schedule
workloads automatically between CPU and LAMBDA. We
demonstrate the benefits of optimal dataflow as well as the
exploration by implementing LAMBDA on Xilinx FPGA.

Our key contributions can be summarized as follows:

• a flexible reconfigurable end-to-end inference accelera-
tor, LAMBDA which enables real-time optimal dataflows
switching for every single convolution layer with negli-
gible latency overhead.

• a multi-stage reduction network, Additive Folded Fat
Tree (AFFT), together with its routing algorithm to en-
able flexible data reordering (including arbitrary unicas-
ting and multicasting) in data reduction.

• an end-to-end inference framework and compiler to de-
ploy arbitrary ML models down to LAMBDA running
on Xilinx FPGAs. On ResNet50, LAMBDA achieves
0.5 ∼ 2× speedup over Xilinx DPU with a similar num-
ber of PE running at the same clock frequency.

2 BACKGROUND AND MOTIVATION

2.1 Convolution Layers and Dataflow Space

Fig. 1 depicts the general convolution with seven dimensions
with various shapes. Existing dataflows could be represented
as a nested loop with four types of optimization.

• Tiling breaks down dimensions K,C,X, Y into smaller
chunks, and enables executing workloads in tile granu-
larity as on-chip storage is limited.

• Ordering allows arbitrary loop reordering to reuse more

data since dimensions K,C,X, Y,R, S don’t come with
loop-carry dependency.

• Parallelism allows for arbitrary parallelism over any
dimensions as all dependencies are loop-independent,
leading to different reuse opportunities.

• Shaping permits variant sizes of workload tiles.

All four above types of optimizations create an extremely
large dataflow design space with a complexity of O(1036)
for a single convolution layer (Kao & Krishna, 2020). Sur-
prisingly, none of these dataflows is generally optimal for
all types of workloads (Kwon et al., 2020).

2.2 Reconfigurable Accelerator and Challenges

The current state-of-the-art (SotA) publicly available FPGA
accelerator is the Xilinx DPU. We evaluate the performance
of the Xilinx DPU B2304 running at 200 MHz on the
ZCU 104 evaluation board under two typical workloads,
ResNet50 and MobileNetV3. The results are shown in
Fig. 2, where the vertical axis encodes the ratio of real
latency (measured in us) to the theoretical number of com-
putations. A higher value on y-axis indicates a higher in-
efficiency under a specific workload because it consumes
more latency for a given number of demanded computations.
Both figures reveal two inefficiencies of the Xilinx DPU

• Fig. 2a shows a general inefficiency of Xilinx DPU
across various workloads, especially on workloads with
large iAct height/width and large kernel height/width as
illustrated by the pointed circles.

• Fig. 2b depicts that depth-wise convolution costs about
50× latency/compute than the average ratio of normal
convolution layers on Xilinx DPU.

The inefficiency of Xilinx DPU stems from its rigid homoge-
neous scaling up systolic array design, which only supports a
single dataflow with parallelism (2, 12, 12) in (X/Y,C,K)
for Xilinx DPU B2304. Under such a fixed dataflow, Xilinx
DPU hardly achieves good utilization among all different
types of workloads. This limitation highlights the potential
for performance improvement through switching dataflows.
By adopting the optimal dataflow for each individual layer,
we can achieve better performance and efficiency.

A comparison between LAMBDA and other prior works is
illustrated in Tab. 1, where none of prior arts supports
dataflows switching based on the workloads.

3 LAMBDA OVERVIEW

In this section, we will unveil the mechanism of LAMBDA to
change dataflows with negligible overheads by introducing
separate components and corresponding scheduling.
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Figure 2. Performance profiling of Xilinx DPU (B2304).
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Figure 3. The overview of the LAMBDA architecture.
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Figure 4. The micro-architecture of LAMBDA DPE and PE.

3.1 LAMBDA Dot Product Engine (DPE) Design

Typical accelerators feature thousands of MAC arrays to de-
liver sufficient throughput e.g. Google TPUv4, IBM’s AIU,
and Nvidia’s Simba (Dey et al., 2019), and so on. However,
a homogeneous rigid arrangement of thousands of MAC
arrays could lead to low utilization on depth-wise and point-
wise workloads. To address this, LAMBDA implements a
scale-out design of LAMBDA DPEs, each with independent
input ports that fetch data from exclusive on-chip storage.
The output ports of all DPEs connect to the same AFFT
reduction network, allowing fine-grain data reduction and
data reordering among all on-chip storage. We implement
separate computation engines for ReLU and BatchNorm.
Pooling layers could be converted to convolution and get
executed on the DPEs with a comparator add-on. To mini-
mize data movement costs, all computation engines share
the same on-chip storage.

The microarchitecture of DPE is illustrated in Fig. 4. Each

DPE contains a 8× 16 2D PE array. Infrequently changing
data like zero points of weights will be fed through a row-
wise bus to each PE. Frequently changing data such as input
activations (iActs) and weights move inside the 2D PE array
in a column-wise store-and-forward manner, allowing for
both reuse across different rows. Additionally, each PE has
an internal 8-depth buffer to hold stationary data inside PE
and generate results every 8 cycles. The combination of
store-and-forward logic and internal buffers enables only a
single PE row to generate valid output every cycle, such that
all rows of PEs can share the same reduction network with
a column-wise bus to deliver output to it.

3.2 On-chip storage

The on-chip storage has been physically divided into sepa-
rate buffers with different layouts for sufficient bandwidth.

3.2.1 Stationary (StaB) and Streaming Buffer (StrB)

The typical paradigm of processing convolution or General
Matrix Multiply (GEMM) will keep one type of data station-
ary, termed a stationary tensor, and stream the other type of
data, termed as a streaming Tensor. As for the streaming ten-
sor, LAMBDA fetches and processes in the tiling granularity
and we implement a ping-pong buffer to enable the latency
hiding of fetching the next tile from off-chip DRAM. Fig. 3
shows the case of buffer-level activation stationary, where
iActs and oActs will be kept stationary inside StaB while
weights will be streamed through StrB1/StrB2. We could
swap the storage of iActs/oActs and weights for buffer-level
weights stationary based on the demand of dataflows.

3.2.2 ZP/Scale Buffer (ZSB)

We adopt PyTorch FBGEMM and QNNPACK quantization
schemes. Both convert 32-bit floating point data into 8-
bit integers together with 8-bit zero points (ZP) and 32-bit
floating point scales (Krishnamoorthi, 2018). Further, the
scale is quantized in a 32-bit fixed point format with a 30-bit
fraction to save computation overhead. Both ZP and scale
are shared among a group of data to save storage.

3.2.3 Instruction Buffer (IB)

The LAMBDA is featured with a reconfigurable flexible re-
duction network, the configurations of which are generated
offline and get fetched into IB to configure the reduction
network in the run-time.

3.3 Additive Folded Fat Tree (AFFT)

The Additive Folded Fat Tree (AFFT) is a multi-stage net-
work that performs data reordering in data reduction. It takes
computation results from LAMBDA DPE array and routes
them to new locations of buffer while performing data re-
duction, lining it up for the layout required by the next
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Figure 5. The latency comparison between LAMBDA and Xilinx DPU on ResNet 50.
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Figure 6. Functionality of AFFT 8x8 switch and control.

dataflow. Such low-cost data reordering enables LAMBDA
to change optimal dataflows for different workloads, thus
further reducing latency.

3.3.1 AFFT Switch

The AFFT utilizes a 2x2 AFFT switch as its basic building
block, which is depicted in Fig. 6. The switch is controlled
by a 2-bit configuration word to manipulate 4 reordering in
reduction (RIR) patterns as illustrated in Fig. 6.

• Through/Switch: directly connect or swap two input
data to output ports.

• Add-Left/Right: add two input data and send to the left
or right output port.

3.3.2 AFFT Topology

For LAMBDA DPEs with N columns in total (N must be a
power of 2), the AFFT has 2× log(N)− 1 level with N/2
AFFT switches located at every level. In essence, the AFFT
topology is a folded version of the fat tree topology, which
makes it a symmetric topology with respect to the middle
level, allowing recursive constructions.

3.3.3 AFFT Routing

Previous arts have proven the following two routing capabili-
ties of the fat tree (Leiserson, 1985; Bogdanski, 2014).

• unicasting on arbitrary source-destination pair using
lowest common ancestor routing algorithm. Specifically,
the lowest common ancestor (one switch in the middle
stage in Fig. 6) is specified first. Then one path is set up
by tracing the path from the lowest common ancestor to
both the source and destination.

Table 2. Comparison with State-of-the-art Implementation
LAMBDA DPUCZDX8G (B1024) ratio

LUT 25406 33796 0.75
Register 46508 48144 0.97
BRAM 320 104 3.07
URAM 8 0

DSP 576 230 2.5
PeakOps/cycle 1024 1024 1

GFlops(100MHz) 102.4 102.4 1
• conjectured to allow rearrangeable multicasting from the

pair of multiple sources and a specific destination, and
vice versa. However, there are no efficient algorithms to
determine the path for multicasting.

Therefore, we adopt an oblivious routing algorithm to oblivi-
ously select the middle switch for unicasting, and an exhaus-
tive sweeping of middle switches to find out the feasible
routing for required multicasting. Fig. 6 illustrates one mul-
ticasting case, where the input data sharing the same color
get reduced during traverse inside AFFT and get routed to
the specific output port connected to the target buffer.

4 PRELIMINARY EVALUATION

We compare LAMBDA against Xilinx DPU using end-to-end
latency on the same Xilinx ZCU 104 (5W) with resources
shown in Tab. 2, where high DSP consumption could be
saved through multiplication width tuning.

We configure LAMBDA to run two selected dataflows and it
achieves 0.5∼1.95× faster than Xilinx DPU (Fig. 5). The
performance benefits come from the changing of dataflows
across different layers, while the inefficiency comes from
the extra padding required for layers with small sizes, which
could be improved by picking better dataflows.

5 CONCLUSION

In this paper, we propose LAMBDA, the first accelerator de-
sign that enables switching optimal dataflows for different
workloads with negligible costs. LAMBDA features a novel
reduction network called Additive Folded Fat Tree (AFFT)
that enables data reordering in data reduction (RIR). This
allows each result to be directly routed to its new location
in the layout required by the next dataflow, without incur-
ring explicit latency overhead. We believe it could achieve
optimal theoretical performance through executing purely
optimal dataflows as well as enable dataflow explorations.
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